3.3: Homogencous Equations with Constant Coefficients

We restrict our attention to equations of the form
any[n} + a"n—ly(n_l:I s e (1],?]’ + oy = 0 (I)
and define the characteristic (or auxiliary) equation by

ant" + @yt b ar +ag = 0. (2)

Theorem 1. (Distinct Real Roots)

If the roots ry, 7. ..., 7, of the characteristic equation (2) are real and distinct,
then

y(ﬁ:) — clerlm + Cgerzzz e +(,n{_,rn:r.

is a general solution to (1).

Example 1. Solve the initial value problem
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Theorem 2. (Repeated Roots)

If the characteristic equation (2) has a repeated real root r of multiplicity k, \I 'Z -Sx
then the part of a general solution of the differential equation (1) corresponding

to 7 is of the form
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Example 2. Find a gencral solution to the equation
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Next we wish to consider what happens if we do not have all real roots. In
order to do this, we use Euler’s formula

¢ = cos@ +ising (3)
to give us a hint, Therefore

elatiblr e“z((:os bx + ¢sin bL)

Theorem 3. (Complex Roots)
If the characteristic equation (2) has a complex root r = a + ib, then the part
of a general solution of the differential equation (1) corresponding to r is of
the form

e™ () cos b + casin bz).

Exercise 1. Show that y(x) = ¢, cosbr + ¢y sinbir is a solution to

y' + 6y =0,
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Example 3. Find the particular solution to the initial value problem

' — 4y +5y =0, y(0)=1,4(0)=05.
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Exercise 2. Find the general solution to

g g + 4y = 0.
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Theorem 4. (Repeated Complex Roots)

If the characteristic equation (2) has a repeated complex root r = a + ib of
multiplicity &, then the part of a general solution of the differential equation
(1) corresponding to 7 is of the form

k-1
Z 2Pe (¢, cos br + ¢, sinbr).
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Example 4. Find the general solution to the differential equation whose
characteristic equation has roots 3, -5,0,0,0,0, —5,2 + 3i and 2 + 3.
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Exercise 3. Find the general solution to the differential equation

Y+ — 10y =0.
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Homework. 1-31 (odd)



