We restrict our attention to equations of the form

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$
 (1)

and define the characteristic (or auxiliary) equation by

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0.$$
 (2)

Theorem 1. (Distinct Real Roots)

If the roots r_1, r_2, \ldots, r_n of the characteristic equation (2) are real and distinct, then

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$$

is a general solution to (1).

Example 1. Solve the initial value problem

$$y^{(3)} + 3y'' - 10y' = 0, \quad y(0) = 7, y'(0) = 0, y''(0) = 70.$$

$$Y = C_1 + C_2 e^{SX} + C_3 e^{SX}, \quad 7 = C_1 + C_2 + C_3$$

$$Y = -5C_2 e^{SX} + 7C_3 e^{SX}, \quad 0 = -SC_2 + 7C_3$$

$$Y = -5C_2 e^{SX} + 7C_3 e^{SX}, \quad 0 = -SC_2 + 7C_3$$

$$Y = 7SC_2 e^{SX} + 4C_3 e^{SX}, \quad 70 = 7SC_2 + 4C_3$$

$$Y = 7SC_2 e^{SX} + 4C_3 e^{SX}, \quad 70 = 7SC_2 + 4C_3$$

$$(=0, C_2 = 7, C_3 = S)$$

Theorem 2. (Repeated Roots)

If the characteristic equation (2) has a repeated real root r of multiplicity k, $\sqrt{2} = 2e^{-\frac{r}{2}} + 5e^{-\frac{r}{2}}$, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$(c_1 + c_2x + \dots + c_{k-1}x^{k-2} + c^kx^{k-1})e^{rx}$$

Example 2. Find a general solution to the equation

$$Q_{1}^{5} - 6y^{4} + y^{3} = 0.$$

$$Q_{1}^{5} - 6y^{4} + y^{3} = 0.$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2}) e^{x} + (c_{4} + c_{5}x) e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2}) e^{x} + (c_{4} + c_{5}x) e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

$$V(x) = (c_{1} + (c_{2}x + (c_{3}x^{2} + c_{4}) e^{x})^{3} + (c_{5}x e^{x})^{3}$$

Next we wish to consider what happens if we do not have all real roots. In order to do this, we use Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{3}$$

to give us a hint. Therefore

$$e^{(a+ib)x} = e^{ax}(\cos bx + i\sin bx).$$

Theorem 3. (Complex Roots)

If the characteristic equation (2) has a complex root r = a + ib, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$e^{ax}(c_1\cos bx + c_2\sin bx).$$

Exercise 1. Show that $y(x) = c_1 \cos bx + c_2 \sin bx$ is a solution to

$$Y'' + b^{2}y = 0.$$

$$Y = C_{1} \cos bx + C_{2} \sin bx$$

$$Y'' = -bC_{1} \sin bx + bC_{2} \cos bx$$

$$Y''' = -b^{2}C_{1} \cos bx - b^{2}C_{2} \sin bx$$

Example 3. Find the particular solution to the initial value problem

$$y'' - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 4y' + 5y = 0, \quad y(0) = 1, y'(0) = 5.$$

$$Y^{2} - 2y' + 2y'$$

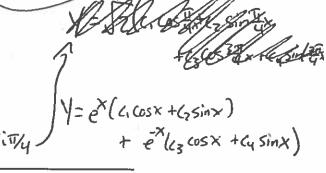
Exercise 2. Find the general solution to

$$y^{(4)} + 4y = 0.$$

$$(r^{2}+7i)(r^{2}-7i) = 0$$

$$(r+\sqrt{2i})(r-\sqrt{2i})(r+\sqrt{2i})(r-\sqrt{-2i}) = 0$$

$$(r = \sqrt{2}e^{i\pi/2i}, r_{2} = \sqrt{2}e^{i\pi/2i}, r_{3} = \sqrt{2}e^{i\pi/2i}, r_{4} = \sqrt{2}e^{i\pi/2i}$$



Theorem 4. (Repeated Complex Roots)

If the characteristic equation (2) has a repeated complex root r = a + ib of multiplicity k, then the part of a general solution of the differential equation (1) corresponding to r is of the form

(-1,1)

545°

$$\sum_{p=0}^{k-1} x^p e^{ax} (c_p \cos bx + c_p \sin bx).$$

Example 4. Find the general solution to the differential equation whose characteristic equation has roots $3, -5, 0, 0, 0, 0, -5, 2 \pm 3i$ and $2 \pm 3i$.

Solution $C_1 + C_2 x + C_3 x^2 + C_4 x^3$ $C_5 e^{3x}$ $(C_6 + C_7 x) e^{3x - 5x}$ $e^{2x} (C_8 \cos 3x + C_4 \sin 3x)$ $+ x e^{2x} (C_{10} \cos 3x + C_{11} \sin 3x)$

Exercise 3. Find the general solution to the differential equation

$$y^{(3)} + y' - 10y = 0.$$

Only possible Roots are ±1,±2,±5,±10

$$(r-2)(r^2+2r+5)=0$$

 $(r-2)[(r+1)^2+4]=0$
 $r_1=2, r_2=-1\pm2i$

$$V(x) = c_1 e^{7x} + \bar{e}^{x} (c_2 \cos 2x + c_3 \sin 2x)$$